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Abstract 

Background and Purpose: Computer Tomography Perfusion (CTP) is a useful tool in the 

evaluation of acute ischemic stroke, where it can provide an estimate of the ischemic core and the 

ischemic penumbra.  The optimal CTP parameters to identify the ischemic core remain 

undetermined. 

Methods: We utilized Artificial Neural Networks (ANNs) to optimally predict the ischemic core 

in acute stroke patients, using diffusion-weighted imaging as the gold standard.  We first designed 

an ANN based on CTP data alone and next designed an ANN based on clinical and CTP data. 

Results: The ANN based on CTP data predicted the ischemic core with a mean absolute error of 

13.8 ml (SD 13.6 ml) compared to DWI. The area under the receiver operator characteristic curve 

(AUC) was 0.85. At the optimal threshold, the sensitivity for predicting the ischemic core was 

0.90 and the specificity was 0.62. Combining CTP dta with clinical data available at 

time of presentation resulted in the same mean absolute error (13.8 ml) but lower SD 

(12.4 ml). Furthermore, the AUC, sensitivity, and specificity were improved to 0.87, 

0.91, and 0.65, respectively. 

Conclusions: An artificial neural network that integrates clinical and CTP data predicts the 

ischemic core with high accuracy. 
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Introduction 

Computer Tomography Perfusion (CTP) can visualize ischemic brain tissue in patients 

with acute stroke1. Numerous CTP parameters, such as CBV, CBF and Tmax, have been proposed 

for identifying the ischemic core, a critical predictor of outcome2-4. Typically, a threshold is 

applied to a single CTP parameter to identify the ischemic core. The use of a single perfusion 

parameter, however, may not capture all predictive information in the CTP acquisition.  

Machine learning algorithms such as Artificial Neural Networks (ANN) may provide the 

ideal tool to uncover patterns based on multiple CTP parameters to predict the ischemic core.  

Moreover, ANNs could integrate data from CTP with clinical data to further improve their 

predictive power. In this study we aimed to design an ANN that integrates data from all CTP 

parameters as well as clinical data to outline the ischemic core.   
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Methods 

Patient selection and CTP acquisition 

We used data from two prospective studies that collected imaging and clinical data on acute 

stroke patients from three US sites and one Australian site5, 6. Each study was approved by an 

Institutional Review Board. Written informed consent from the patient or a relative was required 

for participation in the study. For inclusion and exclusion criteria, please refer to supplementary 

material at please see http://stroke.ahajournals.org. Images were acquired on scanners from all 

major CT and MRI manufacturers. Further details on CTP acquisition can be found at 

http://stroke.ahajournals.org. 

ANN model 

A feed-forward ANN with supervised training was designed, and back-propagation was 

employed to adjust the weights of the ANN connections in a supervised fashion. As in Figure-1, 

the nodes are organized in the input layer, hidden layers, and single-node output layer. For further 

details on the ANN design, training, and validation as well as ANN prediction analysis, please 

refer to supplementary material at http://stroke.ahajournals.org. 

http://stroke.ahajournals.org/
http://stroke.ahajournals.org/
http://stroke.ahajournals.org/
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Results 

The dataset included 128 acute stroke patients who underwent back-to-back CTP and MRI 

between 2004 and 2012. Patients were excluded because more than 50% of the DWI lesion had 

normal perfusion at the time of CTP (n=18), severe motion artifact resulted in degradation of the 

image data not amenable to correction with motion correction algorithms (n=3), and there was 

insufficient quality of the baseline CTP data (n=4). For patients who met the eligibility criteria, 

the mean age was 68.7 years (SD 14.6), the median time from stroke onset to CT was 190.9 min 

(IQR 138.8-231.3), the median baseline NIHSS score was 15 (IQR 10-19), and the median time 

between CT completion and commencement of MR was 40.5 min (IQR 25.0-82.8). 

The ANN, based exclusively on CTP data, that minimized the mean absolute error between 

CTP and DWI was a 2-layered network with 3 nodes in both the first and second hidden layer. The 

threshold that minimized the mean absolute volumetric error between the ischemic core predicted 

by the ANN and the DWI lesion was 0.52 (mean absolute error 13.8 ml; SD 13.6 ml). The AUC 

was 0.85. The sensitivity and specificity were 0.90 and 0.62, respectively (Figure-2A). The optimal 

ANN, based on both CTP and clinical data, was a 2-layered network with 6 and 5 nodes in the first 

and second layers, respectively. For the ANN that included CTP and clinical data, the threshold 

with the smallest mean absolute error between predicted and DWI lesion volumes was 0.56 (mean 

absolute error of 13.8 ml; SD 12.4 ml). The AUC at this threshold was 0.87. The sensitivity and 

specificity were 0.91 and 0.65, respectively (Figure-2B). ANN predictions were generated in less 

than a second. 

A representative case demonstrating volumetric and spatial correspondence of the voxel-

wise ANN ischemic core prediction at the optimal threshold and the DWI is shown in Figure-3. 



5 

Discussion 

This study shows that an ANN that incorporates CTP and baseline clinical data accurately 

predicts the ischemic core; the mean absolute error was 13.8 ml, less than the reported error of the 

widely used algorithm currently used by our group7. To our knowledge, this is the largest study to 

investigate a machine learning algorithm for CTP prediction of ischemic core and the first to be 

performed on human subjects. The results of this study are valuable in the acute ischemic stroke 

setting where CT is the primary imaging modality.  

Previous studies utilizing machine learning algorithms for ischemic core prediction used 

MR input data or a combination of MR and CT data on a small group of patients or small animals8-

10. Alternative models predicting ischemic tissue fate include a generalized linear model11 and a

probability of infarct model12. However, these linear algorithms may not adequately capture the 

heterogenous and dynamic nature of stroke pathophysiology13. Unlike these models, the ANN 

holds no a priori assumptions regarding the linearity of infarction risk with input parameters, an 

assumption that has been previously challenged.  

The current algorithm, once trained, can be readily appended to automated post-processing 

software. This would create a prediction streamline for fully-automated, multiparametric, sub-

second prediction of the ischemic core using the most widely available stroke imaging modality 

in a computationally inexpensive way. Such a standardized platform would reduce variability 

introduced by different customized CTP processing algorithms, ischemic core definitions, and 

other methodological differences.  

This study has some limitations. First, CTP approximations of the ischemic core using 

ANN will remain imperfect as the gold-standard for the ischemic core remains elusive. Although 
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DWI is regarded the gold-standard for determining acute ischemic infarct, the time interval 

between the CTP and the MR acquisitions allows for ischemic core expansion or partial reversal2, 

allowing for variability in estimating of the ischemic core. This limitation was addressed in our 

study by including patients who underwent CTP and MRI with little time delay (median 40.5 min). 

Inherent variability of DWI ROI delineation can add to the variability. Second, limitations of 

voxelwise analysis include reported overestimation of the ischemic core volume, possible 

dependency on the arbitrary subregion of the brain assessed (e.g. whole brain versus hypoperfusion 

region), and sensitivity to coregistration errors. The limited explanatory power of the ANN, and 

machine learning algorithms more broadly, remains an inherent limitation.  

To our knowledge, this is the first study to use CTP exclusive data to train an ANN to 

predict the ischemic core in humans. Although trained on a large dataset on CT scanners from all 

major vendors at multiple sites using a broad array of acquisition protocols, larger studies with 

more heterogenous cohorts are needed to refine the diagnostic accuracy and evaluate the 

therapeutic impact of ANNs. Moreover, future work is focused on evaluation of additional input 

parameters and application of deep learning methods such as U-net convolutional networks that 

inherently integrate large scale features into the segmentation. With such studies, the ANN may 

evolve into a quantitative framework for ischemic core diagnosis, therapeutic decision making, 

and prognostic evaluation of therapeutic efficacy at an individual level.  
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Figure legends 

Figure-1. A model of a feedforward artificial neural network (ANN). Four CTP maps are used as 

input vectors for the ANN. Bias and weights were omitted for purposes of illustration. 

Figure-2. ROC curves, scatter plot of CTP and DWI ischemic core volumes, and mean ANN-DWI 

difference histogram for ANN using CTP data (A) and CTP and clinical data (B). The optimal 

sensitivity and specificity are determined at the threshold that minimizes the mean absolute CTP-

DWI volumetric error.  

Figure-3. CTP-ANN infarct voxel-level prediction. DWI, ANN prediction, and the co-registered 

ANN prediction-DWI are shown. FN: false negative; TP: true positive; TN: true negative.  
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